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Abstract 
We report a first effort to model the solution of meaningful four-term 
visual analogies, by combining a machine-vision model (ResNet50-
A) that can classify pixel-level images into object categories, with a 
cognitive model (BART) that takes semantic representations of words 
as input and identifies semantic relations instantiated by a word pair. 
Each model achieves above-chance performance in selecting the best 
analogical option from a set of four. However, combining the visual 
and the semantic models increases analogical performance above the 
level achieved by either model alone. The contribution of vision to 
reasoning thus may extend beyond simply generating verbal 
representations from images. These findings provide a proof of 
concept that a comprehensive model can solve semantically-rich 
analogies from pixel-level inputs.  

Keywords: analogy; relations; learning; machine vision; word 
embeddings 

Introduction 
In everyday life, humans continually perceive the world and 
interpret it in terms of meaningful objects and events. The 
representations extracted by perception are elaborated into 
semantic representations that can be communicated by 
language and further transformed by reasoning processes. The 
“holy grail” of cognitive science is to develop integrated 
theories that link perception to language and higher cognition. 
A natural testbed for developing such integrated theories is the 
task of reasoning by analogy from meaningful visual inputs. 
Here we report a first effort to develop a comprehensive model 
of the solution of visual analogies, by combining a model that 
can translate pixel-level inputs into verbal captions with a 
model that can translate semantic vectors for words into 
coherent patterns of semantic relations. 
 Figure 1 depicts an example of the analogies on which we 
focus. This problem is one of a set of 18 developed by 
Krawzcyk et al. (2008), some of which were adapted from an 
earlier set created by Goranson (2002), hence dubbed the 
Goranson Analogy Test (GAT). The upper row presents a 
pictorial problem in the form A:B :: C:?. The task is to select 
the best analogical completion from among a set of four 

options shown in the bottom row. For this example, the 
analogical solution based on matching relations is to choose 
the pie (wine is made from grapes, as pie is made from 
pumpkin). The three distractors include one that is 
semantically related to the C term but fails to match the A:B 
relation (witch), one that is visually similar but also fails to 
match A:B (basketball), and one that is simply unrelated 
(books). Critically, the analogical solution cannot in any 
obvious way be derived from visual information alone, 
because the core relation is semantic/functional rather than 
visual. For example, the fact that wine is made from grapes is 
not depicted in the visual input; rather, it must be retrieved 
from semantic memory. Thus, vision is necessary but not 
sufficient to reliably solve such semantically-rich picture 
analogies. 
 The GAT was originally developed as a tool to evaluate the 
impact of neuropsychological disorders. Krawczyk et al. 
(2008) found that frontal and temporal patients were impaired 
to varying degrees, notably showing an elevated tendency to 
choose the semantic or perceptual distractors. Age-matched 
controls (approximately age 60) achieved about 98% accuracy 
even in the presence of similar distractors. 

Figure 1. Example of a 4-term pictorial analogy with four 
alternatives (from Krawzcyk et al., 2008).  
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 Here we focus on the most fundamental question: how can 
such pictorial analogy problems be solved at all? On the face 
of it, the process begins with the human visual system 
operating on pixel-level inputs of the images in the problem to 
extract a verbal description and/or semantic categorization of 
the objects. Reasoning processes must use these object 
descriptions to determine the relation(s) linking paired objects. 
Based on these relational representations, the reasoner must 
then assess the degree of relational match between A:B and the 
alternative completions for C, finally choosing the option that 
provides the best match.  
 Despite decades of progress in developing computational 
models of visual perception, language processing, and 
analogical reasoning, no model has tackled the full range of 
processing required to solve meaningful visual analogies such 
as the GAT problems. Recent advances in machine vision have 
led to very significant progress in the recognition of objects 
from pixel-level representations (Krizhevsky, Sutskever & 
Hinton, 2012; Semonvan & Zisserman, 2015), including the 
automatic generation of verbal captions (Farhadi et. al., 2010; 
Mao et. al., 2016; Krishna et. al., 2016). However, artificial-
intelligence (AI) models have been less successful in 
transforming visual inputs into semantic representations of 
relations between objects. AI models of visual analogy have 
generally focused on problems that can be solved on the basis 
of simple visual features, such as color and shape (Reed et. al., 
2015; Sadeghi, Zitnick & Farhadi, 2015). In cognitive science, 
most analogy models have simply assumed high-level 
representations of complex propositions (usually hand-coded), 
without dealing with the problem of how these representations 
could be generated by perceptual processes. Lovett and Forbus 
(2017) describe a model that applies analogical reasoning to 
solve Ravens Progressive Matrices problems, which are a form 
of visual analogies based on transformations of geometrical 
shapes. However, the inputs provided to the model are high-
level perceptual descriptions, rather than a matrix of pixels; 
and the Ravens test is entirely formal, devoid of any links to 
semantic knowledge. With important exceptions (e.g., 
Doumas, Hummel, & Sandhofer, 2008), analogy models have 
generally set aside the basic problem of how semantic relations 
could be learned from non-relational inputs. 
 Here we describe two computational models that together 
provide an approximate account of the entire process that may 
underlie solution of GAT problems. One model, ResNet50-A, 
aims to solve the picture analogies using purely visual 
information, while also generating verbal captions. The other, 
BART, aims to solve the same analogies based solely on 
verbal descriptions of the images. We further show that the 
analogy assessment derived by ResNet50-A using just visual 
information not only provides potential verbal inputs to 
BART, but also adds independent visual information that 
increases solution accuracy. We will first describe the 
operation of each of the two models, and then the results 
obtained by using them both separately and jointly. 
 
 
 

 
 
Figure 2. Example of a 4-term pictorial analogy with four 
alternatives, and corresponding descriptions verbally 
presented to patients (from Krawzcyk et al., 2008).  

GAT Dataset 
The GAT dataset includes 18 picture analogies, each consisted 
of 7 images: the three images in the question, A, B, and C, and 
the four images for alternative D terms. All images are line 
drawings or clip art images. Each image was captured in the 
size of 140x140 pixels. The GAT dataset included a total of 
126 images that fall into 118 distinct object categories. A 
verbal caption describing each image was used by Krawczyk 
et al. (2008) in their neuropsychological study; these captions 
were adopted as canonical verbal descriptions of each image 
for the semantic model, BART. Figure 2 shows a second 
example, along with approximations of the corresponding 
verbal descriptions used by Krawczyk et al. (2008). Note that 
in the neuropsychological study, the accompanying labels 
were presented orally by the experimenter, rather than in 
written form. 

ResNet: From Pixels to Object Classification 
Background 
Deep convolutional neural networks (Krizhevsky, Sutskever, 
& Hinton, 2012; Simonyan & Zisserman, 2015) have led to a 
series of breakthroughs for a broad range of computer vision 
tasks. The network depth is of crucial importance. Recent 
work with deeper networks has exposed a degradation 
problem: as network depth increases, accuracy reaches a 
plateau, and then degrades rapidly as network depth increases 
further. ResNet (He, Zhang, Ren, & Sun, 2016) addresses the 
degradation problem by introducing a framework termed deep 
residual learning. ResNet fits a residual mapping, realized by 
a feedforward neural network with identity shortcut 
connections. Using this method, ResNet can be efficiently 
trained with as many as 1000 layers. Because of its compelling 
performance levels, ResNet has quickly emerged as one of the 
leading architectures for a wide range of tasks in computer 
vision. Here we adopt ResNet50 (the basic architecture with 
50 layers) as a state-of-the-art approach to identifying and 
captioning the objects in GAT analogies. We then augment the 
model to create ResNet50-A (where the “A” stands for 
“Analogy”) by adding a decision procedure to generate 
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potential analogical solutions based solely on visual 
information in the images. 
 
Training Dataset 
The GAT images are line drawings (as are most images used 
in picture analogy tests that have been developed for 
psychological research or cognitive assessments). Machine 
vision models are typically trained on photo-realistic images, 
and require additional training with line drawings in order to 
classify them. In order to provide suitable training for 
ResNet50, we created a database of clip art images that were 
similar to GAT images, but not identical to them. This dataset, 
termed the ClipArt dataset, includes the 118 object categories 
used in the GAT visual analogy problems. To create the 
ClipArt dataset, we queried Google Image Search using the 
“Search by image” function, uploading the corresponding 
GAT image and entering a phrase formed by concatenating the 
category label and the words “clip art”. (For some categories, 
we visually checked the result and decided to replace “clip art” 
by “drawing”, “sketch”, or “cartoon”.) We downloaded 200 
images for each category and manually removed those that 
were duplicates or clearly wrong. Each category in the 
resulting ClipArt dataset was represented by 70-166 images. 
The images were then processed into gray scale and padded 
with zero on short edges to fit a 1:1 aspect ratio. 

For each category, we randomly selected 50 images for 
training, and held the rest images for test, resulting in a total 
of 5900 training images and 5501 test images. Figure 3 
juxtaposes a GAT image (left) with a ClipArt image (right) 
from the same category. To ensure that the model was able to 
generalize its visual recognition performance, the GAT dataset 
was only used to guide construction of the ClipArt dataset; the 
GAT images themselves were not used to train ResNet50. 
 
Training 
We implemented ResNet50 using Pytorch on a single TitanX 
GPU. The training task was image classification by 
minimizing the cross-entropy loss. The model was pretrained 
on the ImageNet dataset, and then fine-tuned on our ClipArt 
dataset for 200 epochs. Batch size was set equal to 120 and 
learning rate started at 0.01, followed by cosine annealing. For 
optimization, SGD optimizer was used with momentum = 0.9, 
weight decay = 0.0001. To prevent overfitting, small random 
image transformations (e.g., rotation, translation, scaling) 
were added to the input images. The model achieved a high 
performance level on the ClipArt test set, achieving 0.883 for 
top-1 accuracy (i.e., the correct object category label being 
identified as the first choice of the model), and 0.973 for top-
5 accuracy (i.e., the correct object category label being 
identified as one of the top five choices of the model). When 
tested on the GAT images for the visual analogy problems, the 
model achieved 0.833 for top-1 accuracy and 0.984 for top-5 
accuracy. 
 

 
Figure 3. Example images. In each row, the first image is from 
the GAT dataset, while the remaining images are from the 
ClipArt dataset. Top row: images with label “electric mixer”; 
bottom row: images with label “book”. 

Analogical Inference 
We extended ResNet50 to form ResNet50-A by adding a 
simple computation to derive analogy predictions from the 
model. We input each GAT image into the neural network and 
extracted the penultimate feature vector (the vector 
immediately prior to the output layer). This vector of length 
2048 was used as the representation of the image. 
Mathematically, this transformation can be written as: 𝒇 =
𝐹(𝑰; 𝜃), where 𝑰 is the input image, 𝐹 is the function specified 
by the neural network and parametrized by 𝜃, and 𝒇 ∈ 𝑅+,-. 
is the resulting feature vector. Thus, for each analogy question, 
we transfer images 𝑰/, 𝑰0 , 𝑰1 , 𝑰23 , 𝑰2+ , 𝑰24 , 𝑰2-  into feature 
vectors 𝒇/, 𝒇0, 𝒇1, 𝒇23, 𝒇2+, 𝒇24, 𝒇2-, respectively. 

A decision for an analogy problem in ResNet50-A is derived 
by selecting the best 𝐷	 ∈ 	 {𝐷3,𝐷+,𝐷4,𝐷-}  such that the 
relation from A to B holds for C to D. To measure how similar 
the projection from 𝒇/ to 𝒇0  is to the projection from 𝒇1  to 
𝒇2 , we adopted a generic formulation based on cosine 
distances of the difference vectors. The same approach has 
been used in the Word2vec model (Zhila et al., 2013). The 
preferred answer 𝐷: is defined as the D image that generates 
minimum cosine distance between difference vectors: 

 
𝐷: = arg min

2	∈	{2A,2B,2C,2D}
cos	(𝒇0 − 𝒇/, 𝒇2 − 𝒇1) 

 
Note that this procedure for solving a visual analogy is more 

sophisticated than simply choosing the 𝐷: most similar to C, 
since the selection focuses on matching the visual relation 
between the A:B and C:D image pairs. 

For the GAT problems, this purely visual model achieved 
44% accuracy in selecting the correct D term. Its other choices 
were distributed across the three distractors (11%, 17% and 
28% probabilities of choosing semantic distractors, visual 
distractors, and unrelated distractors, respectively). Since 
chance accuracy would be 25%, the purely visual analogy 
model achieved analogical accuracy well above chance 
(although well short of the level achieved by neurotypical 
human adults). 
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BART: From Verbal Semantics to Relations 
The BART model (Bayesian Analogy with Relational 
Transformations) takes as inputs semantic vectors 
representing word meanings and uses supervised learning to 
acquire representations of semantic relations. The model was 
originally applied to learning comparatives (e.g., larger, 
smarter; Lu, Chen & Holyoak, 2012), but has recently been 
generalized to acquire an extremely wide range of semantic 
relations (e.g., synonym, antonym, cause-effect; Lu, Wu & 
Holyoak, 2019). For the present project, the inputs to the 
BART model were word embedding for individual words, 
each embedding consisting of 300-dimension vectors with 
continuous-valued features. The word embeddings were 
obtained by training a deep-learning model, Word2vec 
(Mikolov et al., 2013; Le & Mikolov, 2014) on a large text 
corpus (Google News). BART takes as inputs word pairs 
instantiating a relation, where each pair is represented by the 
concatenation of the Word2vec vector for each individual 
word. For example, a vector formed by concatenating the 
individual vectors for love and hate would constitute a positive 
example of the antonymy relation. The same word pair might 
also serve as a negative example of the category:instance 
relation.  
 
Training Dataset 
For the present project, we trained BART by combining two 
datasets of semantic relations. First, the SemEval-2012 Task 2 
dataset (Jurgens et al., 2012) was used to teach BART the 
representations for 79 abstract semantic relations. This dataset 
is based on a taxonomy of semantic relations and includes 10 
general types (e.g., class inclusion, similar, contrast, cause-
purpose). The dataset includes 3215 word pairs, with 35~48 
pairs for each of the 79 relations. The second dataset, 
developed by Popov, Hristova, and Royce (2017), includes 
some specific and concrete relations (e.g., the relation 
constitution with examples brick:house, thread:cloth; the 
relation cover with examples such as house:roof; and the 
relation boundary with examples such as wall:room). This 
dataset includes 58 specific relations drawn from ten general 
categories of relations. Two relations with inadequate numbers 
of examples were removed. The remaining 56 relations 
included 12~25 word pairs as examples for each relation. 
 
Training 
The BART model consists of a three-stage process to learn a 
broad range of semantic relations (Lu, Wu & Holyoak, 2019). 
In its first stage, BART exploits the heuristic that features 
playing similar functional roles will tend to occupy similar 
ranks in an ordering of differences between paired words. 
BART uses the difference ranking operations to generate 
augmented feature by partially align important features. In the 
second stage, BART selects a subset of important features. In 
the third stage, BART adopts Bayesian learning and uses the 
selected features of word pairs 𝐟J in training examples to 
estimate weights distributions 𝐰 for representing a particular 
relation	𝑅	by applying Bayes rule as: 

𝑃(𝐰|𝐟𝒔,𝑅) ∝ 𝑃(𝑅|𝐟𝒔,𝐰)𝑃(𝐰).             (1) 

 

Figure 4. Model predictions of human data for relation 
typicality in Popov et al. (2017) dataset: Correlations between 
human generation frequencies and model predictions for 10 
relation types for BART (after training with 10 positive 
examples of each relation) and for the baseline Word2vec 
model. 
 

After learning, BART calculates the probability of a word 
pair instantiating a relation. An important aspect of both the 
Jurgens et al. (2012) and the Popov et al. (2017) norms is that 
in each set, the word pairs instantiating each relation form a 
typicality ordering established by human judgments. As 
reported in Lu et. al. (2019), BART achieved high rank-order 
correlations between human typicality ratings and predicted 
probabilities derived from the model for the abstract relations 
in the Jurgens et al. dataset. Across all 79 individual relations, 
the model’s mean Spearman correlation with the human 
ordering was .81 (range from .65 to .91). The performance of 
BART considerably exceeded the mean correlation of .34 
achieved using Word2vec itself as a baseline. 

For the Popov et al. (2017) dataset, which includes more 
specific/concrete relations, BART was trained with just 10 
word pairs as positive examples of each relation. As shown in 
Figure 4, BART achieved higher correlations with human 
typicality as indexed by generation frequencies (mean r = .59) 
than did the Word2vec model (mean r = .19).   
 
Analogical Inference 
To solve 4-term verbal analogy problems, BART forms a 
distributed representation of the specific relation between each 
word pair in a problem. BART uses its pool of learned 
relations to create a more refined representation of the 
relation(s) between two paired words. The posterior 
probabilities calculated for all known relations form a relation 
vector, with each element indicating how likely a word pair 
instantiates a specific relation. Hence, the result of this 
operation is to create a distributed representation of the 
relation(s) between two words, with the original semantic 
features being projected into a transformed space that can be 
used to assess relation probabilities. 
 For analogical reasoning, BART had available 79 relations 
derived by training on the Jurgens et al. (2012) norms, plus 56 
relations derived by training on the Popov et al. (2017) norms.  

0
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Figure 5. Proportion of responses for GAT problems for which 
the model’s selection was the analogical option (correct), the 
semantic distractor, the visual distractor, and the unrelated 
option. Besides ResNet50-A and BART, we also report results 
obtained using Word2vec, and the integrated model (i.e., 
ResNet50-A combined with BART).  
 
Of the latter, six relations showed weak correlations with 
human typicality ratings, indicating BART had failed to learn 
them adequately from the small number of available examples.  
Further examinations of the training sets for these six relations 
revealed that a substantial number of word pairs either 
included ambiguities or were otherwise questionable as 
instances of the relation. Accordingly, these six relations were 
dropped, leaving 50 relations from the Popov et al. set to be 
included in the relational representations, for a total of 129 
learned relations. 

Because BART creates relations structured by distinct roles, 
the model can generate the converse of any learned relation in 
a rule-based fashion (without additional training). For 
example, having learned the relation category:instance, 
BART can directly generate the converse relation 
instance:category. By applying converse formation to all 
trained relations, BART doubled its pool of relations, so that a 
total set of 258 semantic relations were available to solve GAT 
analogy problems.  
 To apply the BART model to GAT problems, the input was 
the verbal captions for images provided in the study by 
Krawczyk et al. (2008). Considered as a comprehensive 
model, this makes the link between ResNet50 and BART only 
approximate: although ResNet50 achieves high accuracy in 
generating the target captions, its performance is still less than 
perfect. 
 We were also faced with the problem that for many GAT 
images the optimal caption is a multi-word phrase (e.g., gas 
pump, woman sewing). To obtain semantic vectors for phrases 
that were not included in the Word2vec dictionary, we 
sometimes substituted one-word near-synonyms for which a 
vector was available. When that was not feasible, we used a 
simple averaging method, forming a vector for a phrase by 
averaging the vectors for its content words (cf. Kintsch, 2001).  
 For any pair of semantic vectors, BART uses its learned 
weights to calculate the posterior probability that the pair 
instantiates each relation in the repertoire of the model. The 
vector of length 258 formed by these posterior probabilities 

provides a distributed representation of the specific relation 
between the two expressions in the pair. Similarly to the 
procedure we followed to enable ResNet50-A to solve visual 
analogies, BART’s preferred answer 𝐷:  is that which 
minimizes the cosine distance between the A:B relation and 
the relation formed by C paired with each available option. 

For the GAT problems, the BART model achieved 67% 
accuracy in choosing the correct D term; other choice 
probabilities were 11%, 11% and 1% to choose semantic 
distractors, visual distractors, and unrelated distractors, 
respectively (see Figure 5). To provide a baseline semantic 
model, the performance of Word2vec (Mikolov et al., 2013), 
which does not learn specific semantic relations, can be 
compared with the performance of BART. The Word2Vec 
model achieved 50% accuracy in choosing the correct D term; 
other choice probabilities were 11%, 17% and 22% to choose 
semantic distractors, visual distractors, and unrelated 
distractors, respectively. 

Integration of Visual and Semantic Models 
Finally, we examined the performance of an integrated model 
of solving pictorial analogies, formed by combining the 
measure of relational similarity obtained from the vision 
model (ResNet50-A) with the comparable measure obtained 
from the semantic model (BART). Two free parameters were 
introduced to create the integrated model. 
 We first transformed the vectors used by each model to put 
them on a common scale. The relational similarity measure 
from the visual model is based on difference vectors of visual 
features derived from the penultimate layer of ResNet50-A. 
These difference vectors take values in the range of -8 to 8. In 
contrast, the BART model forms relation vectors using 
posterior probabilities within the range [0 1]. To place the two 
vectors on a similar scale, we introduced a nonlinear 
transformation with an exponential function for the visual 
difference features 𝑣 as exp	(𝛼𝑣) with a scale parameter, set 
at	𝛼 = 2. Cosine distances based on these transformed visual 
difference vectors were used to compute relational distance 
using the visual module: 
𝐷W = cos	(exp	(𝜶(𝒇0 − 𝒇/)), exp	(𝜶(𝒇2 − 𝒇1))). 
The relational similarity measure derived from the semantic 

module, 𝐷J , was calculated by directly using BART as 
described in the preceding section. The final relational 
distance measure was a weighted average of the measures 
from the visual and semantic modules, 𝐷 = 	𝜆𝐷W + (1 −
𝜆)𝐷J, with	the	weight	set	as	𝜆 = 	 .3.  
Figure 5 presents a summary of the results for solving GAT 
analogy problems based on the visual-only model (ResNet50-
A), two semantic models (Word2Vec and BART), and the 
integrated model based relational distance measures from both 
visual (ResNet50-A) and semantic (BART) models. The 
integrated model achieved the highest accuracy (78%) in 
solving GAT analogy problems; other choice probabilities 
were 6%, 11% and 6% to choose semantic distractors, visual 
distractors, and unrelated distractors, respectively. 

We explored the space of parameter values, and found that 
performance of the integrated model was quite robust. In 
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general, the basic results were the same for a broad range of 
parameter values for 𝛼, as long as the value of 𝜆 was less than 
.5, so that the final decision was primarily driven by the 
semantic module, based on BART.  

Discussion 
The present paper provides a proof-of-concept that vision, 
language, and reasoning can be integrated to create a 
comprehensive computational model of how humans or 
machines might solve meaningful visual analogies. Here our 
focus has been on a vision module (ResNet50-A) that can 
generate verbal captions for line drawings, combined with a 
semantic module (BART) that takes word embeddings based 
on verbal captions and generates representations of semantic 
relations. Each model includes a decision procedure for 
assessing the similarity of relations between objects/words and 
selecting the best analogical completion from among a set of 
alternatives. The vision module alone achieves above-chance 
analogical performance on the GAT problems (picture 
analogies in A:B :: C:? format); the semantic module alone is 
more successful; and an integration of the two modules (biased 
to emphasize semantics, but also influenced directly by vision) 
is yet more successful, achieving 78% accuracy. 
 Perhaps the most surprising finding from our computational 
experiments is that the vision module alone was able to 
achieve above-chance accuracy in selecting the analogical 
completion, even though the critical relation is 
semantic/functional. Despite some shortcomings of visual 
deep learning models (Baker, Lu, Erlikhman & Kellman, 
2018), the features in the later layers may capture parallels 
involving visual context (e.g., the fact that airplanes and eagles 
both cooccur with sky in many natural images, analogous to 
the fact that ships and fish both cooccur with water in natural 
images). Apparently, for some GAT problems, the similarity 
of the visual difference between the A:B pair to that between 
the C:D options is at least weakly correlated with the semantic 
relations that define the analogical answer. Moreover, the 
visual module continues to add useful information on top of 
that provided by the semantic module. Thus, vision may play 
two important functions in solving picture analogies: 
generating verbal captions that in turn feed the semantic 
module, and directly providing visual correlates of semantic 
relations. 

The present project is only a first step toward the “holy 
grail” of a unified model connecting perception to thinking. 
The performance of the integrative model falls short of the 
high accuracy level achieved by healthy human adults not 
under time pressure (Krawcyzk et al., 2008). A number of 
incremental improvements are worth pursuing. ResNet50 
might benefit from additional training on line drawings. Its 
accuracy in captioning might also be improved by making use 
of contextual information (e.g., the presence of a pumpkin as 
the C term in Figure 1 might aid in recognizing the pie). If the 
captioning accuracy of the visual module could be improved, 
its output could be directly passed to BART (rather than 
allowing BART direct access to optimal captions). 
Furthermore, future investigations need to explore how to 

combine visual and semantic knowledge to solve generative 
tasks in analogical reasoning (Chen, Lu & Holyoak, 2017).  

Deeper developments would include adopting more 
sophisticated techniques for translating multi-word captions 
into semantic vectors, and eventually dealing with structured 
text descriptions of analogical scenes (Richland, Morrison, & 
Holyoak, 2006). Perhaps most intriguing is the possibility of 
creating hybridized visuosemantic representations that would 
allow perception to meld with meaning. 
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